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Abstract
A BGK-type procedure is applied to multi-component gases undergoing
chemical reactions of bimolecular type. The relaxation process towards local
Maxwellians, depending on mass and numerical densities of each species as
well as common velocity and temperature, is investigated in two different cases
with respect to chemical regimes. These cases are related to the strong reaction
regime characterized by slow reactions, and to the kinetic chemical equilibrium
regime where fast reactions take place. The consistency properties of both
models are stated in detail. The trend to equilibrium is numerically tested
and comparisons for the two regimes are performed within the hydrogen–
air and carbon–oxygen reaction mechanism. In the spatial homogeneous
case, it is also shown that the thermodynamical equilibrium of the models
recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler
equations.

PACS numbers: 05.20.Dd, 47.70.Fw, 82.20.Wt

1. Introduction

Chemically reactive gas mixtures play a relevant role in many meaningful physical
applications, as for instance combustion and plasma physics, for which kinetic models of
the extended Boltzmann equation can be used to improve the knowledge of the involved
macroscopic phenomena, starting from a description of the system at the mesoscopic scale.

The main objective of the present paper consists in the derivation, in the framework
of kinetic theory, of simple models which at the same time are capable to provide a good
description of reactive gas flows in unbounded domains for two different chemical regimes,
and are easy to handle numerical simulations. More in detail, for a reactive mixture, a BGK-
type procedure is proposed in order to replace the complex form of the collision operator by a
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less detailed structure, based upon a simpler operator which retains the main properties of the
true elastic and inelastic collision operator. Accordingly, two BGK-type models are proposed
for strong and kinetic chemical equilibrium regimes, following a unified procedure.

The influence of chemical reactions in rarefied flows has been analysed since the fifties
by Prigogine and Xhrouet [1] in the framework of the Boltzmann equation and more recently
in the book by Bird [2] at the level of direct simulation methods. On the other hand, after the
paper by Prigogine, a wide literature on this topic has been produced, as documented in the
book [3], where the contribution to the generalization of the Boltzmann equation to reactive
gas mixtures has been systematized. For a chemical mechanism with an arbitrary number of
elementary reactions, the mathematical structure of chemistry source terms, conservation and
equilibrium properties have been focused in paper [4], where different chemical regimes have
also been analysed. In particular, the regimes corresponding to both slow and fast reactions,
in a sense that will be better specified later on, are significant for the study of the present
paper which refers to a gas mixture of four reactive species interacting through a bimolecular
reaction. More in detail, consider the dimensionless extended Boltzmann equation for the
one-particle distribution function fi of species i,

∂fi

∂t
+ v · ∇fi = 1

ε
Ji[f ](v) +

1

εq
Ri[f ](v), i = 1, . . . , 4, (1)

where [f ] = {f1, . . . , f4} and the other symbols have the following meaning: the term Ji

denotes the elastic collision operator including scattering contributions to the species i due to
encounters with particles of any species; the term Ri denotes the reactive collision operator
including the effects of the chemical production and loss mechanism due to inelastic collisions
with chemical reactions. Moreover, ε represents a small parameter and q is an integer whose
value allows us to define the chemical regimes. The case q = 0 characterizes the strong
reaction regime in which a slow chemical reaction takes place. Accordingly, the ratio of
characteristic times between reactive and inert collisions results to be of an order of magnitude
greater than 1. The case q = 1 characterizes the kinetic chemical equilibrium regime [5] in
which a fast chemical reaction occurs, so that the chemistry characteristic time is of the same
order as the inert collisions time. Other regimes may be analysed as well but only these two
will be considered in this paper.

Due to the mathematical complexity of the collision operators, a large piece of research
works has been addressed to simplified kinetic models. A wide literature underlines the
relevance of the BGK approach [6] and its reliability also for computing gas transport properties
far from equilibrium, assuming relaxation of the distribution functions towards either a local
Maxwellian or an anisotropic Gaussian [7–9]. Extensions of BGK-type models to multi-
component systems can be found in [10], and more recently in [11] where a model satisfying
the main properties of the true Boltzmann collision operator is presented. Both papers
[10, 11] are concerned with mixtures of inert gases. Thus, a BGK approximation of the
extended Boltzmann equation for chemically reacting gases seems to be a new interesting
topic to deal with.

In the context of strong reaction regime, two recent BGK-type approaches [12, 13] are
available for different choices of reference velocity distributions. Both BGK-type models
assume relaxation towards distributions of Gaussian shape. More in detail, in paper [12] a
first heuristic approach was based on relaxation towards Maxwellians depending on mass and
number densities of each gas species, common velocity and temperature. Conversely, in [13],
another approach was proposed assuming reference distributions depending on mass, number
densities, velocity and temperature of each gas species.
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The two approximate models of the present paper, derived in sections 3 and 4 for slow
and fast reactions, respectively, can be formally written in non-dimensionless form as

∂fi

∂t
+ v · ∇fi = J̃ i[f , f̃ ](v) + R̃i[f , f̃ ](v), i = 1, . . . , 4, (2)

where

f̃ i(v) = ni

(
mi

2πkBT

) 3
2

exp

(
−mi(v − u)2

2kBT

)
(3)

is the local Maxwellian distribution of species i depending on the masses mi and number
densities ni of each i-species, common velocity u and temperature T. The terms J̃ i and R̃i

approximate the true elastic and reactive operators, respectively. Two different expressions of
them are examined. The former J

(1)
i and R(1)

i give rise to a BGK-type model in the strong
reaction regime (hereinafter named model 1), and the latter J

(2)
i and R(2)

i determine a BGK-
type model in the kinetic chemical equilibrium regime (model 2), according to the contents of
sections 3 and 4, respectively.

Due to the assumptions on the characteristic times, in R(1)
i the chemical gain terms

involve mechanical equilibrium, whereas in R(2)
i the chemical gains include both mechanical

and chemical equilibrium. It is proven that both models verify indifferentiability principle,
conservation of mass, momentum and total energy (kinetic plus chemical bond energy).
The entropy inequality is assured, for the first model, under a suitable constraint on the
distribution functions of the endothermic reaction products, and without any condition for the
second model. All the preliminaries concerning the true Boltzmann equation for reactive gas
mixtures, which are necessary to construct the approximate models and prove their fundamental
properties, are based on the formulation of [14] and form the content of section 2.

At the end of the paper, in section 5, the behaviour of the models is tested with respect to
their trend to equilibrium. At this scope, the explicit form of the kinetic equations is derived
assuming elastic cross sections of Maxwellian molecules and isotropic pseudo-Maxwellian
forms, temperature dependent, for the inelastic cross sections referred to the exothermic
and endothermic reactions. Numerical experiments are given for the elementary reactions
occurring in the hydrogen–air and carbon–oxygen reactive processes, which are typical in
combustion applications [15]. At last, in the spatial homogeneous case, the thermodynamical
equilibrium values of the models are compared with those proper for the reactive Euler
equations formulated in the corresponding regimes of slow and fast chemical reactions. The
comparisons reveal a satisfactory agreement with the asymptotic values of the Euler equations.

2. Exact kinetic equations for a reactive mixture

The microscopic state of the gaseous mixture, for which the chemical reversible reaction takes
place,

A1 + A2 � A3 + A4, (4)

is defined by the one-particle distribution function

fi = fi(t,x,v), t ∈ R+, x ∈ R
3, v = {vx, vy, vz} ∈ R

3,

for each species Ai, i = 1, . . . , 4, with molecular mass mi and heat of formation Ei . Masses
and heats of formation are arranged so that m1+ m2 = m3+ m4 and �E = E3 + E4 − E1−E2 >

0, so that the forward reaction is settled as the endothermic one. The time and space dependence
will be omitted in the following.
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2.1. Kinetic equations

The exact kinetic equations for the reactive gas mixture, derived in paper [14], are given by
∂fi

∂t
+ v · ∇fi = Ji[f ](v) + Ri[f ](v), i = 1, . . . , 4, (5)

where

Ji[f ](v) = Gi[f ](v) − Li[f ](v), Ri[f ](v) = Gi[f ](v) − Li[f ](v). (6)

The gain and loss terms Gi,Li due to elastic collisions have the form

Gi[f ](v) =
4∑

j=1

∫
R

3
dw

∫
S

B
ij

ij (g, µ)fi(vij )fj (wij ) dΩ′ (7)

Li[f ](v) = νi(v)fi(v), (8)

where

νi(v) =
4∑

j=1

∫
R

3
dw

∫
S

B
ij

ij (g, µ)fj (w) dΩ′, (9)

g = |w − v| being the relative pre-collision speed, µ = Ω · Ω′,Ω and Ω′ denoting the
unit vectors of the relative pre-collision and post-collision velocities, respectively. Moreover,
B

ij

ij (g, µ) are the scattering cross sections and νi(v) are the elastic collision frequencies.
Finally, the post-collision velocities preserving mass, momentum and kinetic energy are
given by

vij = miv + mjw − mjgΩ′

mi + mj

, wij = miv + mjw + migΩ′

mi + mj

. (10)

The source terms Gi due to chemical reactions are explicitly reported here in the form

G1[f ](v) = M3
∫

R
3

dw

∫
S

C34
12(g, µ)f3(v1)f4(w1) dΩ′

G2[f ](v) = M3
∫

R
3

dw

∫
S

C34
12(g, µ)f4(v2)f3(w2) dΩ′

G3[f ](v) = 1

M3

∫
R

3
dw

∫
S

C12
34(g, µ)f1(v3)f2(w3) dΩ′

G4[f ](v) = 1

M3

∫
R

3
dw

∫
S

C12
34(g, µ)f2(v4)f1(w4) dΩ′,

(11)

whereas the sink terms Li are given by

Li[f ](v) = σi(v)fi(v), i = 1, . . . , 4, (12)

where

σ1(2)(v) =
∫

R
3

dw

∫
S

C34
12(g, µ)f2(1)(w) dΩ′

σ3(4)(v) =
∫

R
3

dw

∫
S

C12
34(g, µ)f4(3)(w) dΩ′,

(13)

M = (m1m2)/(m3m4),v,w are the pre-collision velocities, vi ,wi are the post-collision
velocities defined by

v1 = r1v + r2w − r4V Ω′, w1 = r1v + r2w + r3V Ω′

v2 = r2v + r1w − r3V Ω′, w2 = r2v + r1w + r4V Ω′

v3 = r3v + r4w − r2V Ω′, w3 = r3v + r4w + r1V Ω′

v4 = r4v + r3w − r1V Ω′, w4 = r4v + r3w + r2V Ω′,

(14)
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with

ri = mi

m1 + m2
, V = [

M(g2 − g2
s )

]1/2
, V = [

M(g2 + g2
s )

]−1/2

(15)

gs =
[

2�E(m1 + m2)

m1m2

]1/2

, gs =
[

2�E(m1 + m2)

m3m4

]1/2

, Ω′ = w1 − w2

|w1 − w2| ;

C12
34 , C34

12 are the cross sections related to the exothermic and endothermic reactions,
respectively, obeying the micro-reversibility principle [3] and σi(v) are the correspondent
reactive collision frequencies.

2.2. Properties of the collision terms

As shown in [14], elastic and reactive terms satisfy the following properties:∫
R

3
Ji[f ](v) dv = 0, i = 1, . . . , 4, (16)∫

R
3
R1[f ](v) dv =

∫
R

3
R2[f ](v) dv = −

∫
R

3
R3[f ](v) dv = −

∫
R

3
R4[f ](v) dv. (17)

Property (16) corresponds to the conservation of number of particles of each gas species during
elastic interactions only. Equalities (17) are due to the fact that the evolution of the number
density of each species is predicted by chemical exchanges according to the bimolecular
reaction (4).

Moreover, the vanishing of any integral
∫

R
3 Ri[f ](v) dv traduces the chemical

equilibrium condition of the model.
It can be easily shown that if the distribution functions are Maxwellians given by (3), the

chemical equilibrium is assured if one of the following equivalent conditions holds true:

(m3m4)
3f̃ 1(v)f̃ 2(w) = (m1m2)

3f̃ 3(v1)f̃ 4(w1)

(m3m4)
3f̃ 1(w)f̃ 2(v) = (m1m2)

3f̃ 3(w2)f̃ 4(v2)

(m1m2)
3f̃ 3(v)f̃ 4(w) = (m3m4)

3f̃ 1(v3)f̃ 2(w3)

(m1m2)
3f̃ 3(w)f̃ 4(v) = (m3m4)

3f̃ 1(w4)f̃ 2(v4).

(18)

In paper [14] it has been proven that conditions (18) imply the equality
n1n2

n3n4
= M

3
2 exp

(
�E

kBT

)
, (19)

which expresses the mass-action-law of chemical equilibrium. When the number densities
ni do not fulfil the mass-action-law (19), the Maxwellian distributions will be indicated by
f

(1)
i . In contrast, when condition (19) is satisfied, the Maxwellians will be denoted by f

(2)
i .

In conclusion, the distributions f
(1)
i , relevant for mechanical equilibrium only, assure the

vanishing of the elastic terms, whereas the distributions f
(2)
i , relevant to mechanical and

chemical equilibrium, imply the vanishing of the whole collision integral in equation (5).

2.3. Collision invariants

The family of Maxwellians f
(1)
i depends on eight parameters u, T , ni , i = 1, . . . , 4, fixed by

the eight independent mechanical collision invariants:

ψ(1) = vx{m1,m2,m3,m4}, ψ(2) = vy{m1,m2,m3,m4}, ψ(3) = vz{m1,m2,m3,m4}
(20a)
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ψ(4) = {
1
2m1v

2 + E1,
1
2m2v

2 + E2,
1
2m3v

2 + E3,
1
2m4v

2 + E4
}

(20b)

θ(1) = {1, 0, 0, 0}, θ (2) = {0, 1, 0, 0}, θ (3) = {0, 0, 1, 0}, θ (4) = {0, 0, 0, 1}.
(20c)

The invariants θ(k), k = 1, . . . , 4, are related to the conservation of individual number densities
nk during elastic collisions only.

Conversely, the family of Maxwellians f
(2)
i depends on seven independent parameters,

i.e. u, T and number densities correlated by the mass-action-law (19). Introduce then the
invariants

ψ(5) = θ(1) + θ(3), ψ(6) = θ(1) + θ(4), ψ(7) = θ(2) + θ(4), (21)

which are joined to the conservation of partial number densities n1 + n3, n1 + n4, n2 + n4.
Therefore, the seven independent parameters are fixed by the model collision invariants

ψ(1), . . . , ψ(4), ψ(5) = {1, 0, 1, 0}, ψ(6) = {1, 0, 0, 1}, ψ(7) = {0, 1, 0, 1}, (22)

where ψ(1), . . . , ψ(4) are given in equations (20a) and (20b).

Remark 1. It should be noted that the choice of the collision invariants (21) associated with
partial number densities is pertinent when the constituents of the mixture undergo one chemical
reaction only. Conversely, when the chemical mechanism shows an arbitrary complexity, one
has to introduce collision invariants associated with the atomic number densities rather than
partial number densities, as discussed in [5].

3. BGK-type model in the strong reaction regime (model 1)

As anticipated in the introduction, the strong reaction regime is proper for a mixture in
which the dominant effect is the one of elastic collisions driving the gas towards Maxwellian
equilibrium. Therefore, in this regime, the approximate elastic and reactive contributions J̃ i ,
R̃i in equation (2) will be derived in terms of the Maxwellians f

(1)
i and will be indicated by

J
(1)
i and R(1)

i , respectively. After some preliminaries, where the fundamental assumptions are
stated, the model equations are deduced and the main properties of the approximate collision
terms are proven.

3.1. Preliminaries

First of all, let ν
(1)
i and σ

(1)
i denote the elastic and reactive frequencies obtained from

expressions (9) and (13), when the distributions fj (w) are substituted by the Maxwellians
f

(1)
j (w).

The model proposed in this section is based on some pertinent assumptions concerning
both elastic mechanism and chemical interaction.

(i) The gas evolves sufficiently near equilibrium conditions, so that after at least one collision
particles may reach a local mechanical equilibrium. Thus, in the gain contributions Gi

and Gi , defined by equations (7) and (11), the distribution functions fi are substituted by
the Maxwellians f

(1)
i .

(ii) The scattering cross sections B
ij

ij are assumed to be of Maxwellian molecules type [16].
The reactive ones C34

12 and C12
34 are chosen as those proper for a generalized Maxwellian

molecules form, so that all the collision frequencies will be v-independent.
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(iii) The differences between the integrals defining νi and ν
(1)
i , and σi and σ

(1)
i , are neglected,

so that

ν
(1)
i = νi, σ

(1)
i = σi, i = 1, . . . , 4. (23)

(iv) The parameters u, T and ni for the Maxwellians f
(1)
i are fixed in terms of the mechanical

invariants (20a)–(20c) through the conditions

4∑
i=1

∫
R

3
ψ

(k)
i (v)fi(v) dv =

4∑
i=1

∫
R

3
ψ

(k)
i (v)f

(1)
i (v) dv, k = 1, . . . , 4, (24a)∫

R
3
θ

(	)
i fi(v) dv =

∫
R

3
θ

(	)
i f

(1)
i (v) dv, 	 = 1, . . . , 4. (24b)

Remark 2. Assumptions (i), (ii) and (iii) extend the classical requirements of the BGK
approximation to the present case of a reactive mixture. Moreover, the assumption that
the reactive cross sections are of generalized Maxwellian molecules type means that they
are isotropic functions of g in such a way that the corresponding frequencies σi will be
v-independent (see section 5).

Remark 3. Assumption (iv) is related to conservation laws of total momentum, energy and
individual number densities, for what deals with the elastic terms J

(1)
i .

3.2. Derivation of the elastic terms J
(1)
i

The BGK approximation of the elastic collision terms, thanks to assumption (i), leads to

J
(1)
i [f , f (1)](v) =

4∑
j=1

B
ij

ij

∫
R

3
dw

∫
S

[
f

(1)
i (vij )f

(1)
j (wij ) − fi(v)fj (w)

]
dΩ′. (25)

Recalling that the Maxwellians satisfy the equality f
(1)
i (vij )f

(1)
j (wij ) = f

(1)
i (v)f

(1)
j (w), the

last equation can be written as

J
(1)
i [f , f (1)](v) =

4∑
j=1

B
ij

ij

[
f

(1)
i (v)

∫
R

3
dw

∫
S

f
(1)
j (w) dΩ′ − fi(v)

∫
R

3
dw

∫
S

fj (w)dΩ′
]

(26)

and according to assumption (iii), the final form of J
(1)
i is

J
(1)
i [f , f (1)](v) = νi[f

(1)
i (v) − fi(v)], i = 1, . . . , 4. (27)

3.3. Derivation of the reactive terms R(1)
i

Consider the definition of Ri given in equation (6). The approximation of the chemical gain
Gi and loss Li , say G(1)

i and L(1)
i respectively, proceeds as follows.

For what concerns the approximation of Gi , it is enough to substitute in each expression
(11) the distributions fi by the corresponding Maxwellians f

(1)
i , sinceG(1)

i represents relaxation
of the chemistry source terms towards mechanical equilibrium only.
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Therefore

G(1)
1 [f (1)](v) =

∫
R

3
dw

∫
S

M3C34
12(g)f

(1)
3 (v1)f

(1)
4 (w1) dΩ′

G(1)
2 [f (1)](v) =

∫
R

3
dw

∫
S

M3C34
12(g)f

(1)
3 (w2)f

(1)
4 (v2) dΩ′

G(1)
3 [f (1)](v) =

∫
R

3
dw

∫
S

1

M3
C12

34(g)f
(1)
1 (v3)f

(1)
2 (w3) dΩ′

G(1)
4 [f (1)](v) =

∫
R

3
dw

∫
S

1

M3
C12

34(g)f
(1)
1 (w4)f

(1)
2 (v4)dΩ′.

(28)

The approximation of the loss terms Li is performed adopting a procedure analogous to
the one used for the elastic losses. Resorting to equalities (23) one has

L(1)
i [f , f (1)](v) = σifi(v). (29)

Therefore, the approximation of Ri reads

R(1)
i [f , f (1)](v) = G(1)

i [f (1)](v) − σifi(v). (30)

In conclusion the BGK-type model in the strong reaction regime is given by

∂fi

∂t
+ v · ∇fi = νi

[
f

(1)
i (v) − fi(v)

]
+ G(1)

i [f (1)](v) − σifi(v), i = 1, . . . , 4. (31)

Remark 4. In thermodynamical equilibrium the distributions f
(1)
i , thanks to relations

(18), coincide with the distributions f
(2)
i . Thus, the vanishing of both elastic and reactive

contributions on the rhs of equation (31) is assured. In the particular case of absolute
equilibrium, the distributions no longer depend on (t,x) and therefore the Maxwellian f

(2)
i (v)

is a solution to the model equation (31).

3.4. Consistency of the model

The conservation equations and entropy inequality for model 1 can be stated after some
preliminary lemmas presented in the next subsection.

3.4.1. Properties of the collision operators J
(1)
i ,R(1)

i . The properties of J
(1)
i are described

by properties 1, 2 whereas those of R(1)
i are presented in lemmas 1, 2.

Property 1. The approximate elastic collision term J
(1)
i is such that

4∑
i=1

∫
R

3
ψ

(k)
i (v)J

(1)
i [f , f (1)](v) dv = 0, k = 1, . . . , 7, (32)

for the collision invariants ψ(k)(v) = {
ψ

(k)
1 (v), . . . , ψ

(k)
4 (v)

}
.

Proof. From (27), it results for k = 1, . . . , 7,
4∑

i=1

∫
R

3
ψ

(k)
i J

(1)
i [f , f (1)](v) dv =

4∑
i=1

νi

∫
R

3
ψ

(k)
i

[
f

(1)
i (v) − fi(v)

]
dv. (33)

In fact, by using conditions (24a), it turns out that equalities (32) are satisfied for
k = 1, . . . , 4. The further equalities for k = 5, 6, 7 hold as well, inserting definitions (21) into
equations (33) and taking into account the ansatz (24b). �
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Property 2. The term J
(1)
i verifies the equalities∫

R
3
J

(1)
i [f , f (1)](v) dv = 0, i = 1, . . . , 4. (34)

Proof. Again from definition (27), one has∫
R

3
J

(1)
i [f , f (1)](v) dv = νi

∫
R

3

[
f

(1)
i (v) − fi(v)

]
dv, (35)

and equalities (34) immediately follow from the BGK ansatz (24b). �

Remark 5. The result of property 2 reproduces the analogous property (16) of the exact
operator Ji . In other words, property 2 means that the elastic collisions do not modify the
number of particles of each species, so that the rate of change of ni is not affected by elastic
collisions.

Lemma 1. The reactive terms R(1)
i , i = 1, . . . , 4, verify the condition

4∑
i=1

∫
R

3
ψ

(k)
i (v)R(1)

i [f , f (1)](v) dv = 0, k = 1, . . . , 7, (36)

for the collision invariants ψ(k)(v) = {
ψ

(k)
1 (v), . . . , ψ

(k)
4 (v)

}
.

Proof. Write each term of the sum on the lhs of equation (36) in explicit form by means
of equations (30). Rearrangement of the involved integrals, employment of ansatz (23)
and suitable changes of variables according to relations (14) among pre- and post-collision
velocities, allow us to derive the equalities valid for k = 1, . . . , 7,∫

R
3
ψ

(k)
1 (v)R(1)

1 [f , f (1)](v) dv =
∫

R
3

∫
R

3

∫
S

ψ
(k)
1 (v)K1(v,w,Ω′) dv dw dΩ′∫

R
3
ψ

(k)
2 (v)R(1)

2 [f , f (1)](v) dv =
∫

R
3

∫
R

3

∫
S

ψ
(k)
2 (w)K1(v,w,Ω′) dv dw dΩ′

(37)∫
R

3
ψ

(k)
3 (v)R(1)

3 [f , f (1)](v) dv = −
∫

R
3

∫
R

3

∫
S

ψ
(k)
3 (v1)K1(v,w,Ω′) dv dw dΩ′∫

R
3
ψ

(k)
4 (v)R(1)

4 [f , f (1)](v) dv = −
∫

R
3

∫
R

3

∫
S

ψ
(k)
4 (w1)K1(v,w,Ω′) dv dw dΩ′,

where

K1(v,w,
′) = C34
12(g)

[
M3f

(1)
3 (v1)f

(1)
4 (w1) − f2(w)f1(v)

]
. (38)

The sum of equations (37) leads to equality
4∑

i=1

∫
R

3
ψ

(k)
i (v)R(1)

i [f , f (1)](v) dv =
∫

R
3

∫
R

3

∫
S

[
ψ

(k)
1 (v) + ψ

(k)
2 (w) − ψ

(k)
3 (v1)

−ψ
(k)
4 (w1)

]
K1(v,w,
′) dv dw d
′, (39)

which immediately is reduced to condition (36), since each ψ(k) is a model collision invariant.
�

Lemma 2. The terms R(1)
i , i = 1, . . . , 4, are such that∫

R
3
R(1)

1 [f , f (1)](v) dv =
∫

R
3
R(1)

2 [f , f (1)](v) dv

= −
∫

R
3
R(1)

3 [f , f (1)](v) dv = −
∫

R
3
R(1)

4 [f , f (1)](v) dv. (40)
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Proof. It is enough to write equation (36) of lemma 1 in explicit form for k = 5, 6, 7. �

Remark 6. The property for R(1)
i stated in lemma 2 results indeed to be analogous to property

(17) for the exact reactive operator. In other words, the common rate of change of the
reactants due to chemical reaction is opposite to the common rate of change of the products.
The chemical mechanism of bimolecular reactions (4) results then to be correctly reproduced.

3.4.2. Physical laws. The BGK collision operator verifies the properties of the true
Boltzmann operator consistent with the physical laws.

• Conservation laws. Conservation of mass, momentum and total energy can be deduced
through the following proposition.

Proposition 1. For the model collision invariants ψ(k), k = 1, . . . , 7, the BGK collision
operator verifies the equalities

4∑
i=1

∫
R

3
ψ

(k)
i (v)

(
J

(1)
i [f , f (1)](v) + R(1)

i [f , f (1)](v)
)

dv = 0, k = 1, . . . , 7. (41)

Proof. Equation (41) follows directly from conditions (32) of property 1 and (36) of
lemma 1; the conservation laws result to be verified recalling the definition (22) of the
collision invariants. �

• Entropy inequality. Elastic collisions and chemical reactions contribute to increase the
entropy of the system, according to the next proposition.

Proposition 2. Let H be proportional to the kinetic entropy of the system and φH its diffusive
flux defined by

H(x, t) =
4∑

i=1

∫
R

3
fi log

(
fi

m3
i

)
dv, φH(x, t) =

4∑
i=1

∫
R

3
fi log

(
fi

m3
i

)
v dv. (42)

Then
∂H
∂t

(x, t) + div φH(x, t) � 0, (43)

provided that the distributions of products of the forward reaction satisfy the inequality

4∑
i=3

∫
R

3
log

(
fi

f
(1)
i

)
R(1)

i [f , f (1)](v) dv � 0. (44)

Moreover,
∂H
∂t

(x, t) + div φH(x, t) = 0 if and only if

fi = f
(1)
i and f

(1)
1 (v)f

(1)
2 (w) = M3f

(1)
3 (v1)f

(1)
4 (w1). (45)

Proof. Recalling the model equations (31), property 2 and lemma 2, one obtains

∂H
∂t

(x, t) + div φH(x, t) =
4∑

i=1

∫
R

3
log

(
fi

m3
i

) [
J

(1)
i [f , f (1)](v) + R(1)

i [f , f (1)](v)
]

dv, (46)

where the rhs splits into the sum of the non-reactive and reactive contributions that will be
discussed separately in items (a) and (b), respectively.



BGK models in chemical regimes 10423

(a) Recalling property 1, the elastic contribution becomes
4∑

i=1

∫
R

3
log

(
fi

m3
i

)
J

(1)
i [f , f (1)](v) dv =

4∑
i=1

∫
R

3
log

(
fi

f
(1)
i

)
J

(1)
i [f , f (1)](v) dv

=
4∑

i=1

νi

∫
R

3
f

(1)
i log

(
fi

f
(1)
i

) (
1 − fi

f
(1)
i

)
dv, (47)

which is non-positive term by term, and is equal to zero if and only if fi = f
(1)
i .

(b) Thanks to definition (38) and constraint (44), the reactive contribution on the rhs of
equation (46) assumes the form

4∑
i=1

∫
R

3
log

(
fi

m3
i

)
R(1)

i [f , f (1)](v) dv �
4∑

j=3

∫
R

3
log

(
f

(1)
j

m3
j

)
R(1)

j [f , f (1)](v) dv

+
∫

R
3

∫
R

3

∫
S

log

(
f1

m3
1

)
K1(v,w,Ω′) dv dw dΩ′

+
∫

R
3

∫
R

3

∫
S

log

(
f2

m3
2

)
K1(v,w,Ω′) dv dw dΩ′. (48)

Adopting a procedure quite similar to the one used to prove lemma 1, equation (48)
becomes

4∑
i=1

∫
R

3
log

(
fi

m3
i

)
R(1)

i [f , f (1)](v) dv �
∫

R
3

∫
R

3

∫
S

[
log

(
f1(v)

m3
1

)
+ log

(
f2(w)

m3
2

)

− log

(
f

(1)
3 (v1)

m3
3

)
− log

(
f

(1)
4 (w1)

m3
4

)]
K1(v,w,Ω′) dv dw dΩ′, (49)

which easily results in the form
4∑

i=1

∫
R

3
log

(
fi

m3
i

)
R(1)

i [f , f (1)](v) dv �
∫

R
3

∫
R

3

∫
S

C34
12(g)M3f

(1)
3 (v1)f

(1)
4 (w1)

× log

(
f1(v)f2(w)

M3f
(1)
3 (v1)f

(1)
4 (w1)

)[
1 − f1(v)f2(w)

M3f
(1)
3 (v1)f

(1)
4 (w1)

]
dv dw dΩ′.

(50)

Thus, also such contribution is non-positive, being, in particular, equal to zero if and only if
the equalities in (45) hold. �

Observe that constraint (44) is a mathematical requirement necessary to prove
proposition 2 rigorously. In fact, numerical experiments carried out in section 5 confirm
that the kinetic entropy production is positive and does not depend on such constraint.

• Indifferentiability principle. The BGK-type collision operator satisfies indifferentiability
principle as the true Boltzmann operator [11].

Consider the special case in which all gas species of the mixture have equal mass m, equal
internal energy E and elastic collision frequencies ν. In this case, the chemical process is
absent and the total distribution f = ∑

i fi satisfies a single species BGK equation. In fact,
the sum of equations (31), with elastic contributions only, yields

∂f

∂t
+ v · ∇f = ν

[
4∑

i=1

f
(1)
i (v) − f (v)

]
, (51)
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where
4∑

i=1

f
(1)
i (v) = n

(
m

2πkBT

) 3
2

exp

(
−m(v − u)2

2kBT

)
, with n =

4∑
i=1

ni. (52)

Setting
∑

i f
(1)
i = f (1), equation (51) becomes the BGK equation for a single gas species,

which means that indifferentiability is fulfilled.

4. BGK-type model in the kinetic chemical equilibrium regime (model 2)

The kinetic chemical equilibrium regime, first formally introduced in [17] and further
investigated also in [5], is consistent with fluid dynamical processes involving fast chemical
reactions, in which, as already said, mechanical and chemical equilibrium have comparable
relaxation times. The equations governing such a regime are derived taking into account
chemical equilibrium directly at the molecular level. Therefore, as mentioned in the
introduction, the collision operators will be indicated with J

(2)
i for the elastic contribution

and with R(2)
i for the reactive term, since they depend upon the Maxwellian distributions f

(2)
i .

4.1. Preliminaries

The model proposed in the considered regime is based on the following assumptions, which
slightly modify those of section 3, provided that the v-independent collision frequencies
ν

(2)
i , σ

(2)
i are obtained from equations (9), (13) when fj (w) is substituted by the Maxwellians

f
(2)
j (w), and that the independent collision invariants of the model are those specified in

equation (22).

(i′) Particles reach a local thermodynamical equilibrium after at least one collision. Thus,
gain contributions Gi and Gi defined in equations (7), (11) are rewritten in terms of the
Maxwellians f

(2)
i .

(ii′) The differences between the integrals defining νi and ν
(2)
i , and σi and σ

(2)
i , are neglected,

so that

ν
(2)
i = νi, σ

(2)
i = σi, i = 1, . . . , 4. (53)

(iii′) The seven independent parameters for the Maxwellians f
(2)
i are fixed in terms of the

model invariants (22) through the conditions
4∑

i=1

∫
R

3
ψ

(k)
i (v)fi(v) dv =

4∑
i=1

∫
R

3
ψ

(k)
i (v)f

(2)
i (v) dv, k = 1, . . . , 7. (54)

Remark 7. Assumption (54) refers to conservation laws of total momentum, energy and
partial number densities of type n1 + n3, n1 + n4, n2 + n4.

4.2. Derivation of terms J
(2)
i ,R(2)

i

Elastic terms J
(2)
i are obtained according to the assumptions (i′), (ii′) by applying the procedure

of subsection 3.2, i.e.

J
(2)
i [f , f (2)](v) = νi[f

(2)
i (v) − fi(v)]. (55)

The approximate reactive terms can be deduced in quite a similar way giving, with obvious
meaning of symbols,

R(2)
i [f , f (2)](v) = G(2)

i [f (2)](v) − σifi(v). (56)
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The explicit form of the terms in the last equation is that of equations (13) and (28), provided
that the distributions are substituted by f

(2)
i . On the other hand, by taking into account

chemical equilibrium conditions (18), equation (56) can be rewritten in the simpler form

R(2)
i [f , f (2)](v) = σi

[
f

(2)
i (v) − fi(v)

]
. (57)

In conclusion, gathering expressions (55), (57) of terms J
(2)
i ,R(2)

i , the model equations in the
kinetic chemical equilibrium regime read

∂fi

∂t
+ v · ∇fi = (νi + σi)

[
f

(2)
i (v) − fi(v)

]
, i = 1, . . . , 4. (58)

4.3. Consistency of the model

The approximate collision operator assumes now a unified form through the collision
frequencies, coherently with the fact that, in the kinetic chemical equilibrium regime, the
characteristic times of elastic collisions and chemical reaction are comparable.

It is straightforward to state the conservation laws directly from assumption (iii′), the
indifferentiability principle and the entropy inequality without any constraint, as shown in the
next proposition.

Proposition 3. Let H and φH be defined by

H(x, t) =
4∑

i=1

∫
R

3
fi log

(
fi

m3
i

)
dv, φH(x, t) =

4∑
i=1

∫
R

3
fi log

(
fi

m3
i

)
v dv. (59)

Then
∂H
∂t

(x, t) + divφH(x, t) � 0. (60)

Moreover one has
∂H
∂t

(x, t) + divφH(x, t) = 0 if and only if fi = f
(2)
i .

Proof. The proof is immediate, since now the reactive terms R(2)
i have the same functional

form as the elastic terms (55). Thus it is enough to apply the procedure carried on in part (a)
of the proof of proposition 2. �

5. Applications

In view of applications, explicit expressions for the model equations (31) and (58) will be
derived in the next subsection, whereas some numerical experiments related to different
reaction mechanisms will be performed in the last subsection.

5.1. Explicit forms of models 1 and 2

With reference to the strong reaction regime, the collision frequencies νi, σi and gains G(1)
i

must be computed in terms of the elastic B
ij

ij and reactive C34
12 , C12

34 cross sections. As already
specified in sections 3 and 4, for elastic interactions, cross sections of Maxwellian molecules
have been assumed, that is B

ij

ij = αij , so that the elastic collision frequencies have the form

νi = 4π

4∑
j=1

αijnj , i = 1, . . . , 4. (61)
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Moreover for the cross section C12
34 , related to the exothermic reaction, the generalized isotropic

Maxwellian molecules form proposed in [18] will be adopted, that is

C12
34(g) = β

(
1 − ξ 2

g2

)
H(g − ξ), (62)

β being a scalar factor, ξ the threshold velocity of the exothermic reaction and H the Heaviside
function. In particular it results

ξ =
(

2Ea

�

)1/2

, � = m3m4

m1 + m2
,

Ea being the activation energy of the exothermic reaction. According to the micro-reversibility
condition, it turns out that the cross section C34

12 of the endothermic reaction is expressed by

C34
12(g) = β

(
1

M

) 3
2
(

1 − g2
s

g2

)1/2
(

1 − ξ 2

M
(
g2 − g2

s

))
H

(
g −

(
ξ 2

M
+ g2

s

)1/2
)

. (63)

By inserting expressions (62), (63) on the rhs of equation (31), after some rather cumbersome
integrations, the reactive terms of the model can be written as

R(1)
i [f , f (1)](v) = γif

(1)
i (v) − σifi(v), i = 1, . . . , 4, (64)

where γi and σi are functions of (t,x) through temperature and number densities; in fact they
are given by

γ1 = An3n4/n1, γ2 = An3n4/n2, γ3 = Bn1n2/n3, γ4 = Bn1n2/n4

σ1 = Bn2, σ2 = Bn1, σ3 = An4, σ4 = An3
(65)

where

A(T ) = 4πβ�S

kBT
, B(T ) = A(T )

(
1

M

) 3
2

exp

(
− �E

kBT

)
,

S(T ) = ξ

π

(
2πkBT

�

) 1
2

exp

(
− �ξ 2

2kBT

)
+

(
kBT

�
− ξ 2

)[
1 − erf

{(
�ξ 2

2kBT

) 1
2
}]

.

(66)

The explicit form of model 1 is finally given by

∂fi

∂t
+ v · ∇fi = 4π

4∑
i=1

αijnj

[
f

(1)
i (v) − fi(v)

]
+ γif

(1)
i (v) − σifi(v), i = 1, . . . , 4. (67)

For what concerns model 2 it is enough to rewrite equations (58) in the form

∂fi

∂t
+ v · ∇fi =

(
4π

4∑
i=1

αijnj + σi

) [
f

(2)
i (v) − fi(v)

]
, i = 1, . . . , 4, (68)

where the reactive frequencies σi are provided by equations (65). The last equations (68)
depend on the distributions f

(2)
i which are Maxwellians providing local mechanical and

chemical equilibrium. In order to assure that the distributions f
(2)
i satisfy chemical equilibrium,

they will be constrained to depend on a ‘fictitious’ temperature T̂ recovered by the mass-action-
law (19), namely,

T̂ = �E

kB

{
log

[
n1n2

n3n4

(
1

M

)3/2
]}−1

. (69)
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Figure 1. Reaction H2O + H � OH + H2: (a) number densities ni by models 1 and 2 versus time
and (b) temperatures T and fictitious T̂ versus time.

5.2. Numerical experiments

Numerical experiments for the proposed model equations (67), (68) are performed in the
spatial homogeneous case with the aim of showing the behaviour of the reactive mixture in
models 1 and 2.

In all the experiments shown below non-symmetric bimodal distribution functions are
assumed as initial data for f1, . . . , f4.

The constants αij and β appearing in (61) and (62) are chosen in such a way that, when
slow reactions are considered, reactive collision frequencies are at most 1/10 of the elastic
ones. Conversely, in the case of fast reactions, elastic and reactive collision frequencies are
assumed to be of the same order of magnitude. The values of β, which is only a scale factor
in the modelling of the reactive cross sections, correspond to the correct ratio [19] between
reactive and elastic collision frequencies according to the considered reactive flow regime.
In all the experiments shown below, the elastic collision constant αij has been assumed of
the order of unit. Moreover, the appropriate values of the activation energy Ea and heats of
formation Ei of the reactions considered below can be taken in the books [15, 20].

As a first experiment, the hydrogen–oxygen reaction (�E = 63 311, Ea = 15 160)

H2O + H � OH + H2 (70)

is treated by means of models 1 and 2 in order to underline the different transient behaviour of
densities and temperature, when the reaction proceeds as either a slow or a fast one (β = 0.96
and β = 10, respectively).

In this case, the initial distribution functions provide, through the computation of the
corresponding moments, the following initial values:

n10 = 0.4, n20 = 0.3, n30 = 0.2, n40 = 0.1, T0 = 1615,

expressed in mole l−1 for number densities and kelvin for temperature. This choice, as the
one of the next experiment, is justified by the requirement of testing the models starting from
initial data far enough from chemical equilibrium.

The results are reported versus time in figure 1(a) for the densities and in figure 1(b) for
temperatures. In particular, figure 1(a) shows that both models converge, according to an
exothermic process, towards the same equilibrium values but the transient behaviour is quite
shorter in the kinetic chemical equilibrium regime (model 2), as expected.

In figure 1(b), besides the temperature profiles prescribed by models 1 and 2, denoted
there by T (1) and T (2) respectively, the ‘fictitious’ temperature T̂ , defined by (69), is plotted
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Figure 2. Number densities ni and temperature T versus time (a) for the slow reaction
CO2 + O � O2 + CO, and (b) for the fast reaction O2 + H � OH + O, together with the
Euler constant solutions (dashed lines).

as well. The picture shows that such a temperature converges very rapidly to the ‘true’
temperature T (2). Again the temperatures prescribed by the two models converge then to the
same asymptotic value.

As a second experiment, the slow reaction (β = 0.128) of carbon–oxygen chain
(�E = 33 820, Ea = 171 380)

CO2 + O � O2 + CO (71)

and a further fast reaction (β = 0.857) of hydrogen–air mechanism (�E = 70 551,
Ea = 70 230)

O2 + H � OH + O (72)

are tested in terms of their appropriate models (figures 2(a) and (b), respectively).
The initial distribution functions provide the following initial values for reaction (71):

n10 = 0.35, n20 = 0.1, n30 = 0.2, n40 = 0.3, T0 = 3632,

and for reaction (72) the data

n10 = 0.35, n20 = 0.1, n30 = 0.2, n40 = 0.3, T0 = 945.

Observe that, as expected, in figure 2(a) the slow reaction equilibrium values are reached after
a greater time (t = 4) than in figure 2(b) (t = 2).

In order to test the reliability of the two models, as a last experiment, equilibrium
number densities and temperatures computed by the proposed models 1 and 2 are compared
to those that can be obtained by the reactive Euler equations in the spatial homogeneous case.
Such comparisons are reasonable only for asymptotic equilibrium quantities, since during the
transient time the results of models 1 and 2 are strongly affected by the initial distributions
chosen for the experiment. In fact, the initial conditions for the BGK-type equations correspond
to a mesoscopic physical state of the mixture characterized by mechanical and chemical non-
equilibrium at the same time, whereas the reactive Euler equations describe the evolution
starting from chemical non-equilibrium only. In particular, the initial data of densities and
temperature for the Euler equations are those provided by the corresponding moments of the
chosen initial distributions.
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Table 1. BGK and Euler equilibrium asymptotic values.

n1 n2 n3 n4 T

(a)
H2O + H � OH + H2 BGK 0.4790 0.2342 0.0710 0.1658 2372.07
slow reaction EUL 0.4792 0.2292 0.0708 0.1708 2373.09
(b)
H2O + H � OH + H2 BGK 0.4763 0.2407 0.0737 0.1593 2357.16
fast reaction EUL 0.4806 0.2306 0.0694 0.1694 2380.59
(c)
CO2 + O � O2 + CO BGK 0.4095 0.1595 0.1405 0.2405 3802.12
slow reaction EUL 0.4096 0.1596 0.1404 0.2404 3802.19

For slow reactions, the comparison with the results of model 1 is performed using the
spatial homogeneous reactive Euler equations derived in paper [19], i.e.

dni

dt
= λi[An3n4 − Bn1n2], i = 1, . . . , 4, λ1 = λ2 = 1, λ3 = λ4 = −1

dT

dt
= 2

3

�E

kBn
[An3n4 − Bn1n2], n =

4∑
i=1

ni,
(73)

which have been obtained from the true nonlinear Boltzmann equation, assuming the same
reactive cross sections modelled by (62) and (63).

Such a comparison is reported in table 1 (frames (a) and (c)) for number densities
and temperature. As it can be noticed, the agreement is almost exact for the reaction
CO2 + O � O2 + CO, and satisfactory for the other reaction H2O + H � OH + H2: the
discrepancies are due to model inaccuracies and, in the worse case, the error is less than 3%.

For fast reactions described by model 2, the same kind of comparison is possible using the
fast reactive Euler equations deduced in [21]. From such equations it is rather straightforward
to compute explicitly the asymptotic values of number densities and temperature. The
computation consists in finding first the asymptotic value of n1 from the unique zero of
the function

F(n1) = 3(y2 + y3 − y1)�E

2 log
[(

1
M

)3/2 n1(n1−y1)

(y2−n1)(y3−n1)

] − n1�E − U, (74)

where
y1 = n10 − n20, y2 = n10 + n30, y3 = n10 + n40,

U = 3

2
n0kBT0 − n10�E, n0 = y2 + y3 − y1.

(75)

The asymptotic values of the other macroscopic quantities are then obtained by

n2 = n1 − y1, n3 = y2 − n1, n4 = y3 − n1, T = 2(U + n1�E)

3n0kB
(76)

and the results are plotted (dashed lines) in figure 2(b).
This last comparison is not very satisfactory since this time, as can be seen in table 1

(frame (b)), the discrepancy in the worse case is of the order of 6%. However, this result is
not completely surprising since model 2 has been derived under stronger assumptions (see
item (i′)) which are valid for a system closer to equilibrium. It should be observed once more
that the numerical experiments of this section, conversely, assume initial conditions rather far
from equilibrium.
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6. Conclusions

In this work two BGK-type models, describing at the kinetic level the time-space evolution
of a mixture of four gases undergoing slow and fast chemical reactions, have been derived.
The model equations include reference functions (Maxwellian distributions) dependent on the
number densities of each species and on the mean velocity and temperature of the overall
mixture. In an absolute thermodynamical equilibrium state, the Maxwellian distributions
are also solution to the model equations. Moreover, the BGK collision operator verifies the
properties of the true Boltzmann operator [14] consistent with the physical laws of the system.
The numerical experiments, proposed at the end of the paper in the spatial homogeneous
case, have shown a good qualitative behaviour with respect to the trend to thermodynamical
equilibrium.

It may be noted that such results must be interpreted within the limit of validity of the
models. In fact a perturbation of velocity distribution, induced by the chemical reactions,
was already identified in [1] and, afterwards, in [2] by direct simulations of the Boltzmann
equation. In particular, the deviations from the Gaussian character of the velocity distribution,
which implies non-vanishing values of the kurtosis, have been observed for both fast and
slow reactions, respectively, in papers [22, 23], through Chapman–Enskog expansion of the
Boltzmann equation. This discrepancy is essentially due to the BGK framework in which the
models have been derived. Therefore, in authors’ opinion, a correction should be brought to
such a derivation in order to take into account the above-said deviations. This point can be
viewed as an open problem to deal with.

Moreover, the relevance of the BGK-type models also far from equilibrium has been
discussed for inert flows in [7, 24]. The feasibility of reactive BGK-type models for the
computation of transport properties and for more general situations than the one faced in the
present paper is the main objective of a work in progress.

In conclusion, the procedure proposed here can be extended, in a rather straightforward
way, to systems of reactive chains with several slow and/or fast reactions and a large number
of chemical compounds in order to deduce their time-space evolution equations. In authors’
opinion, derivation of ‘simple’ kinetic models, which take into account non-equilibrium
chemical processes dependent on their localization in space, may be interesting also in
simulations useful for the assessment of industrial plants safety [25].
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